.. _exercices: Exercices ######### .. Note:: Les exercices sont de difficulté variable, de ★ (simple) à ★★★ (complexe). Quelques exercices sont également disponibles sous forme de Jupyter notebooks: * :ref:`/Exercices/exos_python.ipynb` |NB| * :ref:`/Exercices/exo_poo.ipynb` |NB| .. contents:: Liste des exercices :local: :depth: 2 Introduction ============ .. _integ: Intégration: méthode des rectangles ★ ------------------------------------- La :wfr:`méthode des rectangles ` permet d'approximer numériquement l'intégrale d'une fonction `f`: .. math:: \int_a^b f(x)\,\mathrm{d}x \approx h \sum_{i=0}^{n-1} f(x_{i}) \quad\text{avec}\quad h = (b-a)/n \quad\text{et}\quad x_i = a + (i+1/2)h. On définit la fonction `sq` renvoyant le carré d'un nombre par (cf. :ref:`fonctions`):: def sq(x) : return x**2 Écrire un programme calculant l'intégrale de cette fonction entre *a=0* et *b=1*, en utilisant une subdivision en *n=100* pas dans un premier temps. En comparant au résultat analytique, quelle est la précision de la méthode, et comment dépend-elle du nombre de pas? .. _fizz: Jeu bête: Fizz Buzz ★ --------------------- Écrire un programme jouant au :wen:`Fizz Buzz` jusqu'à 99:: 1 2 Fizz! 4 Buzz! Fizz! 7 8 Fizz! Buzz! 11 Fizz! 13 14 Fizz Buzz! 16... .. Tip:: utiliser :samp:`print({chaine}, end=" ")` pour éviter le retour à la ligne entre chaque affichage. .. _pgcd: PGCD: algorithme d'Euclide ★★ ----------------------------- .. figure:: https://upload.wikimedia.org/wikipedia/commons/5/59/Algorithme_PGCD.png :align: center :alt: Algorithme d'Euclide. Écrire un programme calculant le :abbr:`PGCD (Plus Grand Commun Dénominateur)` de deux nombres (p.ex. 756 et 306) par l':wfr:`algorithme d'Euclide`. .. _tables: Tables de multiplication ★ -------------------------- Écrire un programme affichant les tables de multiplication:: 1 x 1 = 1 1 x 2 = 2 ... 9 x 9 = 81 Manipulation de listes ====================== .. _pascal: Triangle de Pascal ★ -------------------- Calculer le :wfr:`Triangle de Pascal` d'ordre 5:: [ [1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1], [1, 5, 10, 10, 5, 1] ] .. _crible: Crible d'Ératosthène ★★ ----------------------- Implémenter le :wfr:`Crible_d'Ératosthène` pour afficher les nombres premiers compris entre 1 et un entier fixe, p.ex.:: Liste des entiers premiers <= 41 [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] .. Attention:: l'implémentation ne doit contenir aucune division ou opération modulo `%`! .. _carre: Carré magique ★★★ ----------------- Un carré magique d’ordre *n* est un tableau carré *n × n* dans lequel on écrit une et une seule fois les nombres entiers de 1 à *n²*, de sorte que la somme des *n* nombres de chaque ligne, colonne ou diagonale principale soit constante. .. table:: Carré magique d'ordre 5, où toutes les sommes sont égales à 65. :align: center :width: 12em == == == == == 11 18 25 2 9 10 12 19 21 3 4 6 13 20 22 23 5 7 14 16 17 24 1 8 15 == == == == == Pour les carrés magiques d’ordre impair, on dispose de l’algorithme suivant -- *(i,j)* désignant la case de la ligne *i*, colonne *j* du carré; on se place en outre dans une indexation « naturelle » commençant à 1: 1. la case *(n,(n+1)/2)* contient 1 ; 2. si la case *(i,j)* contient la valeur *k*, alors on place la valeur *k+1* dans la case *(i+1,j+1)* si cette case est vide, ou dans la case *(i-1,j)* sinon. On respecte la règle selon laquelle un indice supérieur à *n* est ramené à 1. Programmer cet algorithme pour pouvoir construire un carré magique d’ordre impair quelconque. Programmation ============= .. _syracuse: Suite de Syracuse (fonction) ★ ------------------------------ Écrire une fonction `suite_syracuse(n)` retournant la (partie non-triviale de la) :wfr:`suite de Syracuse` pour un entier *n*. Écrire une fonction `temps_syracuse(n, altitude=False)` retournant le temps de vol (éventuellement en altitude) correspondant à l'entier *n*. Tester ces fonctions sur *n=15*: >>> suite_syracuse(15) [15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1] >>> temps_syracuse(15) 17 >>> temps_syracuse(15, altitude=True) 11 .. _sierpinksi: Triangles de Pascal et Sierpińksi ★ ----------------------------------- L'objectif est de calculer et afficher les :wfr:`Triangle de Pascal` et :wfr:`Triangle de Sierpińksi`, p.ex.: .. code:: text Pascal's triangle of order 5: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 Sierpinski's triangle of order 11: * ** * * **** * * ** ** * * * * ******** * * ** ** * * * * **** **** 1. Écrire une fonction `next_row(row)` retournant le rang suivant à partir du rang précédent (liste). >>> next_row([1, 1]) [1, 2, 1] 2. Écrire une fonction `compute_pascal(n=5)` retournant le triangle de Pascal d'ordre *n* (liste de listes) >>> compute_pascal(3) [[1], [1, 1], [1, 2, 1], [1, 3, 3, 1]] 3. Écrire une fonction `print_pascal(triangle)` affichant un triangle de Pascal comme ci-dessus (utiliser :meth:`str.center()` pour centrer une chaîne de caractère). 4. Écrire une fonction `compute_sierpinski(n=5)` calculant un triangle de Sierpiński d'ordre *n* à partir d'un triangle de Pascal de même ordre, en remplaçant les nombres impairs par 1, et les nombres pairs par 0. 5. Écrire une fonction `print_sierpinski(triangle)` affichant un triangle de Sierpiński comme ci-dessus. 6. **BONUS:** Écrire une fonction `main()` lisant un entier positif sur la ligne de commande (utiliser :obj:`sys.argv`), et affichant les triangles de Pascal et de Sierpiński de cet ordre. Appeler cette fonction au sein d'un bloc principal dans le script `pascal.py` afin de pouvoir l'exécuter sur la ligne de commande:: $ python pascal.py 5 Pascal's triangle of order 5: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 Sierpinski's triangle of order 5: * ** * * **** * * ** ** .. _koch: Flocon de Koch (programmation récursive) ★★★ -------------------------------------------- .. index:: pair: module; turtle En utilisant les commandes `left`, `right` et `forward` de la bibliothèque graphique standard :mod:`turtle` dans une fonction *récursive*, générer à l'écran un :wfr:`flocon de Koch` d'ordre arbitraire. .. figure:: koch_3.* :align: center :alt: Flocon de Koch d'ordre 3. Flocon de Koch d'ordre 3. .. _pm: Jeu du plus ou moins (exceptions) ★ ----------------------------------- Écrire un jeu de « plus ou moins »:: Vous devez deviner un nombre entre 1 et 100. Votre proposition: 27 C'est plus. [...] Vous avez trouvé en 6 coups! La solution sera générée aléatoirement par la fonction :func:`random.randint()`. Le programme devra être robuste aux entrées invalides (« toto », 120, etc.), et aux lâches abandons par interruption (:exc:`KeyboardInterrupt` ou :exc:`EOFError`). **Dans le même genre:** coder un *mastermind* (utiliser p.ex. la bibliothèque externe :pypi:`rich`). Programmation Orientée Objet ============================ .. _animaux: Animaux (POO/TDD) ★★ -------------------- Téléchargez le fichier :download:`animaux.py` et exécutez les tests prédéfinis (dans la seconde partie du fichier) via la *ligne de commande* (à éxecuter dans un terminal système, après installation de la librairie externe :pypi:`pytest`):: $ pytest -v animaux.py Dans un premier temps, les tests échouent, puisque le proto-code (dans la première partie du fichier) n'est pas encore correct. L'exercice consiste donc à modifier progressivement les classes `Animal` et `Chien` pour qu'elles passent avec succès tous les tests:: $ pytest -v animaux.py ======================== test session starts ========================= [...] collected 8 items animauxSol.py::test_empty_init PASSED [ 12%] animauxSol.py::test_wrong_init PASSED [ 25%] animauxSol.py::test_init PASSED [ 37%] animauxSol.py::test_str PASSED [ 50%] animauxSol.py::test_mort PASSED [ 62%] animauxSol.py::test_lt PASSED [ 75%] animauxSol.py::test_mange PASSED [ 87%] animauxSol.py::test_init_chien PASSED [100%] ========================= 8 passed in 0.03s ========================== C'est le principe du *Test Driven Development* (voir :ref:`TDD`). .. _life: Jeu de la vie (POO) ★★★ ----------------------- On se propose de programmer l'automate cellulaire le plus célèbre, le :wfr:`Jeu de la vie`. Pour cela, vous créerez une classe `Life` qui contiendra la grille du jeu ainsi que les méthodes qui permettront son évolution. Vous initialiserez la grille aléatoirement à l'aide de la fonction :func:`random.choice`, et vous afficherez l'évolution de l'automate dans la sortie standard du terminal, p.ex.:: ...#..#.....##....... .....###............. #........#........... .....#...#........... ................##... .....#.#......##..#.. ..............##.##.. ..............##.##.. ................#.... .. Tip:: Pour que l'affichage soit agréable à l'oeil, vous marquerez des pauses entre l'affichage de chaque itération grâce à la fonction :func:`time.sleep`. .. Note:: une version plus détaillée de cet exercice est disponible dans le :ref:`TP5_GBM3A`. **Dans le même genre:** :wen:`Abelian sandpile model`. Manipulation de tableaux Numpy ============================== Manipulation de tableaux ★ -------------------------- Écrire une fonction `checkboard(n=8)` générant un tableau $n×n$ en damier:: [[0, 1, 0, 1, ...], [1, 0, 1, 0, ...], [0, 1, 0, 1, ...], ... ] Généraliser pour choisir la taille $m$ des cases, p.ex. `checkboard(n=8, m=2)`:: [[1, 1, 0, 0, 1, 1, 0, 0], [1, 1, 0, 0, 1, 1, 0, 0], [0, 0, 1, 1, 0, 0, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], ... ] Généraliser à des tableaux de rang arbitraire: `checkboard(n=8, m=1, rank=2)`. .. _matrice: Inversion de matrice ★ ---------------------- Créer un tableau carré réel :math:`\mathsf{r}` aléatoire (:func:`numpy.random.randn`), calculer la matrice hermitienne :math:`\mathsf{m} = \mathsf{r} \cdot \mathsf{r}^T` (:func:`numpy.dot` ou :func:`numpy.linalg.matmul`), l'inverser (:func:`numpy.linalg.inv`), et vérifier que :math:`\mathsf{m} \cdot \mathsf{m}^{-1} = \mathsf{m}^{-1} \cdot \mathsf{m} = \mathsf{1}` (:func:`numpy.eye`) à la précision numérique près (:func:`numpy.allclose`). .. _mad: *Median Absolute Deviation* ★ ----------------------------- En statistique, le *Median Absolute Deviation* (MAD) est un estimateur robuste de la dispersion d'un échantillon 1D: `MAD = median(| x - median(x) |)`. À l'aide des fonctions :func:`numpy.median` et :func:`numpy.abs`, écrire une fonction `mad(x, axis=None)` calculant le MAD d'un tableau, éventuellement le long d'un ou plusieurs de ses axes. >>> a = np.arange(4 * 5).reshape(4, 5).astype(float) ** 2 >>> mad(a) 80.0 >>> mad(a, axis=0) array([50., 60., 70., 80., 90.]) >>> mad(a, axis=1) array([ 4. 15. 25. 35.]) >>> mad(a, axis=(0, 1)) 80.0 .. Note:: comparer à :func:`scipy.stats.median_abs_deviation`. .. _pull: Distribution du *pull* ★★★ -------------------------- Le *pull* est une quantité statistique permettant d'évaluer la conformité des erreurs par rapport à une distribution de valeurs (typiquement les résidus d'un ajustement). Pour un échantillon :math:`\mathbf{x} = [x_i]` et les erreurs associées :math:`\mathrm{d}\mathbf{x} = [\sigma_i]`, le *pull* est défini par: * moyenne optimale (pondérée par la variance): :math:`E = (\sum_{i} x_i/\sigma_i^2)/(\sum_i 1/\sigma_i^2)`; * erreur sur la moyenne pondérée: :math:`\sigma_E^2 = 1/\sum(1/\sigma_i^2)`; * définition du *pull*: :math:`p_i = (x_i - E_i)/(\sigma_{E_i}^2 + \sigma_i^2)^{1/2}`, où :math:`E_i` et :math:`\sigma_{E_i}` sont calculées *sans* le point *i*. Si les erreurs :math:`\sigma_i` sont correctes, la distribution du *pull* est centrée sur 0 avec une déviation standard de 1. Écrire une fonction `pull(x, dx)` calculant le *pull* de tableaux 1D. >>> pull(np.arange(3), np.arange(3) + 1) array([-0.67356452, 0.36140316, 0.57498891]) .. _algo: Méthodes numériques =================== .. _numerique: Quadrature et zéro d'une fonction ★ ----------------------------------- À l'aide des algorithmes disponibles dans :mod:`scipy`: * calculer numériquement l'intégrale :math:`\int_0^\infty \frac{x^3}{e^x-1}\mathrm{d}x = \pi^4/15`; * résoudre numériquement l'équation :math:`x\,e^x = 5(e^x - 1)`. .. _romberg: Schéma de Romberg ★★ -------------------- Écrire une fonction `integ_romberg(f, a, b, epsilon=1e-6)` permettant de calculer l'intégrale numérique de la fonction *f* entre les bornes *a* et *b* avec une précision *epsilon* selon la :wfr:`Méthode_de_Romberg`. Tester sur des solutions analytiques et en comparant à :func:`scipy.integrate.romberg`. .. _rk: Méthodes de Runge-Kutta ★★ -------------------------- Développer des fonctions `ode_rk1(f, y0, t)`, `ode_rk2(f, y0, t)` et `ode_rk4(f, y0, t)` permettant d'intégrer numériquement l'équation différentielle du 1er ordre :math:`y' = f(t, y)` avec :math:`y(t_0) = y_0`, en utilisant les :wfr:`Méthodes_de_Runge-Kutta` d'ordre 1, 2 et 4. Tester sur le cas analytique: .. math:: \begin{cases} f(t, y) = \sin^2(t) \times y(t) \\ y(t=0) = 1 \end{cases} \Leftrightarrow y(t) = e^{(t - \sin(t)\cos(t))/2} et en comparant à :func:`scipy.integrate.odeint`. Visualisation (matplotlib) ========================== .. _anscombe: Quartet d'Anscombe ★★ --------------------- Après chargement des données, calculer et afficher les propriétés statistiques des quatres jeux de données du :download:`Quartet d'Anscombe `: * moyenne et variance des *x* et des *y* (:func:`numpy.mean` et :func:`numpy.var`); * corrélation entre les *x* et les *y* (:func:`scipy.stats.pearsonr`); * équation de la droite de régression linéaire *y = ax + b* (:func:`scipy.stats.linregress`). .. table:: Quartet d'Anscombe ===== ===== ===== ===== ===== ===== ===== ===== I II III IV ------------ ------------ ------------ ------------ x y x y x y x y ===== ===== ===== ===== ===== ===== ===== ===== 10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58 8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76 13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71 9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84 11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47 14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04 6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25 4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50 12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56 7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91 5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89 ===== ===== ===== ===== ===== ===== ===== ===== Pour chacun des jeux de données, tracer *y* en fonction de *x*, ainsi que la droite de régression linéaire. .. _logistique: Diagramme de bifurcation: la suite logistique ★★ ------------------------------------------------ Écrivez une fonction qui calcule la valeur d'équilibre de la :wfr:`Suite logistique` pour un :math:`x_0` (nécessairement compris entre 0 et 1) et un paramètre :math:`r` (parfois noté :math:`\mu`) donné. Générez l'ensemble de ces points d'équilibre pour des valeurs de :math:`r` comprises entre 0 et 4: .. figure:: logistique.* :align: center :width: 50% :alt: Diagramme de bifurcation Diagramme de bifurcation. **N.B.** Vous utiliserez la bibliothèque :ref:`matplotlibSec` pour tracer vos résultats. .. _julia: Ensemble de Julia ★★ -------------------- Représentez l':wfr:`ensemble de Julia` pour la constante complexe :math:`c = 0.284 + 0.0122j`: .. figure:: julia.* :align: center :width: 50% :alt: Ensemble de Julia Ensemble de Julia pour :math:`c = 0.284 + 0.0122j`. On utilisera la fonction :func:`numpy.meshgrid` pour construire le plan complexe, et l'on affichera le résultat grâce à la fonction :func:`matplotlib.pyplot.imshow`. **Voir également:** `Superposition d'ensembles de Julia `_ Packaging ========= .. _packaging_1: Partie 1 ★ ---------- 1. Créer un package `erathostene_pkg` constitué du seul module `erathostene_mod.py` contenant la fonction `erathostene` (voir ci-dessus), avec l’arborescence suivante:: Erathostene_repo/ # Repo ├── erathostene_pkg/ # Package │ ├── erathostene_mod.py # Module │ └── __init__.py # Initialisation ├── LICENSE # Licence ├── README # Texte libre └── pyproject.toml # Configuration 2. Ajouter un `__main__.py` à votre package pour pouvoir exécuter:: $ python -m erathostene_pkg 50 [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47] Utiliser :mod:`argparse` (ou :obj:`sys.argv` pour ce cas simple) pour la gestion de l'argument sur la ligne de commande. 3. Ajouter un point d'entrée (*entry point*) à votre fichier de configuration pour pouvoir exécuter:: $ erathostene_pgm 50 [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47] Intermède Git ★ --------------- Héberger votre package sur un dépôt dédié sur le serveur https://gitlab.in2p3.fr. Faire tester l'installation et l'utilisation de votre package par un·e collègue, en lui transmettant l'adresse du dépôt. .. _packaging_2: Partie 2 ★ ---------- Prendre exemple sur :pypi:`pyyc`. Documentation ............. 1. Documenter la fonction `erathostene`, le module `erathostene_mod` et le package `erathostene_pkg` par des *doc-strings*. 2. Ajouter un répertoire `docs/` et y configurer et générer la documentation :pypi:`sphinx` du package (:program:`sphinx-quickstart` et :program:`sphinx-apidoc`). 3. Inclure dans une section dédiée de la documentation un notebook d'exemple (ajouté sous `docs/notebooks/`). Tests ..... 4. Inclure un *doc-test* dans la documentation de la fonction `erathostene`. 5. Ajouter un répertoire `tests/` et y ajouter un test unitaire, en utilisant :pypi:`pytest` ou :mod:`unittest`. 6. Évaluer la couverture des tests avec :pypi:`coverage`. Intégration continue .................... 7. Ajouter un fichier de configuration d'intégration continue `.gitlab-ci.yml` pour une construction et une mise en ligne automatique de la documentation. Manipulation de données (pandas) ================================ .. _owid: Visualisation ★ --------------- À partir du jeu de données en ligne `Data on CO2 `_, générer une figure du genre: .. figure:: owid-co2.* :align: center :width: 50% :alt: Émission de CO2 par personne et cumulée. Évolution de l'émission de CO2 par personne et cumulée. **Source:** `Our World In Data `_ .. _wc18: Statistiques ★★ --------------- 1. Chargez l'ensemble de données `Fifa World Cup 2018 `_. 2. Combien de matchs et combien de pays ? 3. Calculez le nombre moyen de buts par match. Même question pour les passes complétées et les distances parcourues. 4. Trouvez l'équipe ayant couvert la plus grande distance dans un match. 5. Calculez le score moyen. 6. Trouvez les équipes avec la plus grande (resp. la plus petite) distance parcourue par match. 7. Trouvez les matchs où les joueurs ont couru le plus (resp. le moins) *au total*. .. rubric:: Idées supplémentaires: * croiser l'`évolution des temps de parcours ferroviaire `__ avec la géolocation des `villes de France `__ pour produire une `carte des temps de parcours `__. Exercices en vrac ================= .. _canon: Équation différentielle: boulet de canon ★★ ------------------------------------------- À l'aide de la fonction :func:`scipy.integrate.odeint`, intégrer les équations du mouvement d'un boulet de canon soumis à des forces de frottement « turbulentes » (en :math:`v^2`): .. math:: \ddot{\mathbf{r}} = \mathbf{g} - \frac{\alpha}{m}v\times\mathbf{v}. Utiliser les valeurs numériques pour un boulet de :wfr:`canon de 36 livres`: .. code-block:: python g = 9.81 # Pesanteur [m/s2] cx = 0.45 # Coefficient de frottement d'une sphère rhoAir = 1.2 # Masse volumique de l'air [kg/m3] rad = 0.1748/2 # Rayon du boulet [m] rho = 6.23e3 # Masse volumique du boulet [kg/m3] mass = 4./3.*np.pi*rad**3 * rho # Masse du boulet [kg] alpha = 0.5*cx*rhoAir*np.pi*rad**2 / mass # Coeff. de frottement / masse v0 = 450. # Vitesse initiale [m/s] alt = 45. # Inclinaison du canon [deg] **Voir également:** :wfr:`Équations_de_prédation_de_Lotka-Volterra`. .. _SN2005eu: Redshift de la galaxie hôte de SN 2005eu (astropy) ★★★ ------------------------------------------------------ L'objectif de l'exercice est 1. d'extraire le spectre de la galaxie hôte après soustraction du spectre du ciel, 2. de déterminer le redshift à partir des raies en émission. .. rubric:: Extraction du spectre 1. Récupérez et ouvrez le cube :math:`(x, y, \lambda)` de la galaxie hôte de SN 2005eu (:download:`C06_326_085_006_17_R.fits`) observée avec le spectrographe à champ intégral `SNIFS `_. Il s'agit d'un fichier FITS avec NAXIS=3 (15×15 spaxels × 1402 longueurs d'onde), avec le signal en 1e extension et la variance en 2e: >>> hdu = astropy.io.fits.open("C06_326_085_006_17_R.fits") >>> signal = hdu[0].data * 1e16 >>> variance = hdu[1].data * 1e32 >>> y, x = np.mgrid[-7:+7.1, -7:+7.1] # Coordonnées spatiales >>> hdr = hdu[0].header >>> wavelengths = hdr['CRVAL3'] + hdr['CDELT3'] * np.arange(hdr['NAXIS3']) 2. Calculer et tracer le spectre intégré (et l'erreur associée) sur les deux dimensions spatiales. 3. Construire et afficher l'image intégrée sur la dimension spectrale. 4. Estimer le spectre du ciel nocturne à partir des zones externes du cube:: ciel = mean(cube[r > r_out]) Dans un premier temps, vous pouvez déterminer le centre et le rayon de l'ouverture *de visu*. 5. Estimer le spectre de la galaxie à partir de la zone interne du cube auquel vous avez soustrait la contribution du ciel:: galaxy = sum(cube[r < r_in]) .. rubric:: Détermination du redshift .. Note:: Si vous n'avez pas réussi la partie précédente, vous pouvez utiliser le jeu de données :download:`SN2005eu_host.npz`: >>> archive = np.load("SN2005eu_host.npz") >>> λ = archive['wavelength'] >>> signal = archive['flux'] >>> variance = archive['variance'] Estimer son redshift (et l'erreur associée) d'abord avec un simple ajustement gaussien de la raie Hα, puis à partir d'un ajustement conjoint des 5 raies en émission [Hα], [NIIa,b] et [SIIa,b]. Les longueurs d'onde de référence (dans l'air) sont disponibles `en ligne `__. .. Équation d'état de l'eau à partir de la dynamique moléculaire ★★★ ----------------------------------------------------------------- Afin de modéliser les planètes de type Jupiter, Saturne, ou même des exo-planètes très massives (dites « super-Jupiters »), la connaissance de l'équation d'état des composants est nécessaire. Ces équations d'état doivent être valables jusqu'à plusieurs centaines de méga-bar ; autrement dit, celles-ci ne sont en aucun cas accessibles expérimentalement. On peut cependant obtenir une équation d'état numériquement à partir d'une dynamique moléculaire. Le principe est le suivant : on place dans une boite un certain nombre de particules régies par les équations microscopiques (Newton par exemple, ou même par des équations prenant en considération la mécanique quantique) puis on laisse celles-ci évoluer dans la boite ; on calcule à chaque pas de temps l'énergie interne à partir des intéractions électrostatiques et la pression à partir du tenseur des contraintes. On obtient en sortie l'évolution du système pour une densité fixée (par le choix de taille de la boite) et une température fixée (par un algorithme de thermostat que nous ne détaillerons pas ici). On se propose d'analyser quelques fichiers de sortie de tels calculs pour l'équation d'état de l'eau à très haute pression. Les fichiers de sortie sont disponibles :download:`ici `; leur nom indique les conditions thermodynamiques correspondant au fichier, p.ex. `6000K_30gcc.out` pour :math:`T = 6000` K et :math:`\rho = 30` gcc. Le but est, pour chaque condition température-densité, d'extraire l'évolution de l'énergie et de la pression au cours du temps, puis d'en extraire la valeur moyenne ainsi que les fluctuations. Il arrive souvent que l'état initial choisi pour le système ne corresponde pas à son état d'équilibre, et qu'il faille donc « jeter » les quelques pas de temps en début de simulation qui correspondent à cette relaxation du système. Pour savoir combien de temps prend cette relaxation, il sera utile de tracer l'évolution au cours du temps de la pression et l'énergie pour quelques simulations. Une fois l'équation d'état :math:`P(\rho,T)` et :math:`E(\rho,T)` extraite, on pourra tracer le réseau d'isothermes. .. Hint:: Vous écrirez une classe `Simulation` qui permet de charger un fichier de dynamique moléculaire, puis de tracer l'évolution de a température et de la densité, et enfin d'en extraire la valeur moyenne et les fluctuations. À partir de cette classe, vous construirez les tableaux contenant l'équation d'état. .. .. _particle: Points matériels et ions (POO/TDD) ---------------------------------- Pour une simulation d'un problème physique, on peut construire des classes qui connaissent elles-mêmes leurs propriétés physiques et leurs lois d'évolution. La structure des classes est proposée dans ce :download:`squelette `. Vous devrez *compléter* les définitions des classes `Vector`, `Particle` et `Ion` afin qu'elles passent toutes les tests lancés automatiquement par le programme principal `main`. À l'exécution, la sortie du terminal doit être:: ***************** Test functions ***************** Testing Vector class... ok Testing Particle class... ok Testing Ion class... ok ******************** Test end ******************** ************* Physical computations ************** ** Gravitationnal computation of central-force motion for a Particle with mass 1.00, position (1.00,0.00,0.00) and speed (0.00,1.00,0.00) => Final system : Particle with mass 1.00, position (-1.00,-0.00,0.00) and speed (0.00,-1.00,0.00) ** Electrostatic computation of central-force motion for a Ion with mass 1.00, charge 4, position (0.00,0.00,1.00) and speed (0.00,0.00,-1.00) => Final system : Ion with mass 1.00, charge 4, position (0.00,0.00,7.69) and speed (0.00,0.00,2.82) *********** Physical computations end ************ .. .. _PDB: *Protein Data Bank* ------------------- On chercher a réaliser un script qui analyse un fichier de données de type :wfr:`Protein Data Bank`. La banque de données `Worldwide Protein Data Bank `_ regroupe les structures obtenues par diffraction aux rayons X ou par RMN. Le format est parfaitement defini et conventionnel (`documentation `_). On propose d'assurer une lecture de ce fichier pour calculer notamment : - le barycentre de la biomolécule - le nombre d'acides aminés ou nucléobases - le nombre d'atomes - la masse moléculaire - les dimensions maximales de la protéine - etc. On propose de considerer par exemple la structure resolue pour la `GFP `_ (*Green Fluorescent Protein*, Prix Nobel 2008) (`Fichier PDB `_). .. seealso:: Autres sources d'exercices * `Exercices de base `_ |fr| * `Entraînez-vous ! `_ |fr| * `Learn Python The Hard Way `_ * `CheckIO `_ * `Google Code Jam archives `_ .. |fr| image:: ../_static/france_flag_icon.png :alt: Fr .. |en| image:: ../_static/uk_flag_icon.png :alt: En .. |NB| image:: ../_static/favicon-notebook.ico :alt: Jupyter Notebook